CS \& IT College 2020/2021 Semester 1

IS203 Database Principals

Chapter 3: Relational Model

- Structure of Relational Databases
- Relational Algebra

Reference:

Asst Prof. Asaad Allaijaj

"Database System Concepts Fourth Edition" by Abraham Silberschatz Henry F. Korth S. Sudarshan, McGraw-Hill ISBN 0-07-255481-9

Relation Instance

- The current values (relation instance) of a relation are specified by a table
- An element t of r is a tuple, represented by a row in a table

customer-name	customer-street	customer-city
Jones	Main	Harrison
Smith	North	Rye
Curry	North	Rye
Lindsay	Park	Pittsfield

Relation Schema

- $A_{1}, A_{2}, \ldots, A_{n}$ are attributes
- $R=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ is a relation schema
E.g. Customer-schema =
(customer-name, customer-street, customer-city)
- $r(R)$ is a relation on the relation schema R
E.g. customer (Customer-schema)

Attribute Types

- Each attribute of a relation has a name

■ The set of allowed values for each attribute is called the domain of the attribute

■ Attribute values are (normally) required to be atomic (لاتتجز), that is, indivisible
\& E.g. multivalued attribute values are not atomic
P E.g. composite attribute values are not atomic

- The special value null is a member of every domain
- The null value causes complications in the definition of many operations
P we shall ignore the effect of null values in our main presentation and consider their effect later

Basic Structure

■ Formally, given sets $D_{1}, D_{2}, \ldots D_{n}$ a relation r is a subset of $D_{1} \times D_{2} \times \ldots \times D_{n}$ Thus a relation is a set of n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where each $a_{i} \in D_{i}$

- Example: if
customer-name $=\{$ Jones, Smith, Curry, Lindsay $\}$
customer-street $=\{$ Main, North, Park $\}$
customer-city $=\{$ Harrison, Rye, Pittsfield $\}$
Then $r=\{\quad$ (Jones, Main, Harrison),
(Smith, North, Rye),
(Curry, North, Rye),
(Lindsay, Park, Pittsfield)\}
is a relation over customer-name x customer-street x customer-city

Database

- A database consists of multiple relations
- Information about an enterprise is broken up into parts, with each relation storing one part of the information
E.g.: account: stores information about accounts depositor: stores information about which customer owns which account customer : stores information about customers
- Storing all information as a single relation such as bank(account-number, balance, customer-name, ..) results in
Prepetition of information (e.g. two customers own an account)
p the need for null values (e.g. represent a customer without an account)
- Normalization theory (Chapter 7) deals with how to design relational schemas

The customer Relation

customer-name	customer-street	customer-city
Adams	Spring	Pittsfield
Brooks	Senator	Brooklyn
Curry	North	Rye
Glenn	Sand Hill	Woodside
Green	Walnut	Stamford
Hayes	Main	Harrison
Johnson	Alma	Palo Alto
Jones	Main	Harrison
Lindsay	Park	Pittsfield
Smith	North	Rye
Turner	Putnam	Stamford
Williams	Nassau	Princeton

The depositor Relation

customer-name account-number

Hayes
A-102
Johnson
Johnson
Jones
Lindsay
Smith
Turner
A-101
A-201
A-217
A-222
A-215
A-305

E-R Diagram for the Banking Enterprise

Schema Diagram(UML) for the Banking Enterprise

Query Languages

- Language in which user requests information from the database.
- Categories of languages
p procedural
f non-procedural
- "Pure" languages:

P Relational Algebra
P Tuple Relational Calculus
P Domain Relational Calculus

- Pure languages form underlying basis of query languages that people use.

Relational Algebra

- Procedural language
- Six basic operators :
f P select
P project
p union
P set difference
P Cartesian product
P rename
- The operators take one or more relations as inputs and give a new relation as a result.

Select Operation - Example

- Relation r

A	B	C	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

- $\sigma_{A=B \wedge D>5}(r)$

A	B	C	D
α	α	1	7
β	β	23	10

Select Operation

- Notation: $\sigma_{p}(r)$
- p is called the selection predicate
- Defined as:

$$
\boldsymbol{\sigma}_{p}(\boldsymbol{r})=\{t \mid t \in r \text { and } p(t)\}
$$

Where p is a formula in propositional calculus consisting of terms connected by : \wedge (and), $\vee($ or $), \neg($ not $)$
Each term is one of:
<attribute> Op <attribute> or <constant>
where op is one of: $=, \neq,>, \geq,<, \leq$

- Example of selection:

$$
\sigma_{\text {branch-name="Perryridge" }}(\text { account })
$$

Project Operation - Example

- Relation r.

A	B	C
α	10	1
α	20	1
β	30	1
β	40	2

- $\Pi_{\mathrm{A}, \mathrm{C}}(r)$
A C α 1 α 1 β 1 β 2
:---:
α
β

Project Operation

- Notation:

$$
\Pi_{\mathrm{A} 1, \mathrm{~A} 2, \ldots, A k}(r)
$$

where A_{1}, A_{2} are attribute names and r is a relation name.

- The result is defined as the relation of k columns obtained by erasing the columns that are not listed
- Duplicate rows removed from result, since relations are sets
- E.g. To eliminate the branch-name attribute of account
$\Pi_{\text {account-number, balance }}$ (account)

Union Operation - Example

- Relations r, s :

A	B
α	1
α	2
β	1
r	A B α 2 β 3

$r \cup s:$

A	B
α	1
α	2
β	1
β	3

Union Operation

- Notation: $r \cup s$
- Defined as:

$$
r \cup s=\{t \mid t \in r \text { or } t \in s\}
$$

- For $r \cup s$ to be valid.

1. r, s must have the same arity (same number of attributes)
2. The attribute domains must be compatible (e.g., 2nd column of r deals with the same type of values as does the 2nd column of s)

- E.g. to find all customers with either an account or a loan $\Pi_{\text {customer-name }}$ (depositor) $\cup \Pi_{\text {customer-name }}$ (borrower)

Set Difference Operation - Example

- Relations r, s :

A	B
α	1
α	2
β	1
r	A B α 2 β 3

$$
r-s:
$$

A	B
α	1
β	1

Set Difference Operation

- Notation $r-s$
- Defined as:

$$
r-s=\{t \mid t \in r \text { and } t \notin s\}
$$

- Set differences must be taken between compatible relations.
f r and s must have the same arity
attribute domains of r and s must be compatible

Cartesian-Product Operation-Example

Relations r, s :

A	B
α	1
β	2
\boldsymbol{r}	

C	D	E
α	10	a
β	10	a
β	20	b
γ	10	b
s		

r x s:

A	B	C	D	E
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

Cartesian-Product Operation

- Notation $r \times s$
- Defined as:

$$
r \times s=\{t q \mid t \in r \text { and } q \in s\}
$$

- Assume that attributes of $r(R)$ and $s(S)$ are disjoint. (That is, $R \cap S=\varnothing$).
- If attributes of $r(R)$ and $s(S)$ are not disjoint, then renaming must be used.

Composition of Operations

- Can build expressions using multiple operations
- Example: $\sigma_{\mathrm{A}=\mathrm{C}}(\boldsymbol{r} \boldsymbol{x} \boldsymbol{s})$
- rxs

A	B	C	D	E
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

- $\sigma_{\mathrm{A}=\mathrm{c}}(r x s)$

A	B	C	D	E
α	1	α	10	a
β	2	β	20	a
β	2	β	20	b

Rename Operation

- Allows us to name, and therefore to refer to, the results of relational-algebra expressions.
- Allows us to refer to a relation by more than one name.

Example:

$$
\rho_{x}(E)
$$

returns the expression E under the name X
If a relational-algebra expression E has arity n, then

$$
\rho_{X(A 1, A 2, \ldots, A n)}(E)
$$

returns the result of expression E under the name X, and with the attributes renamed to $A 1, A 2, \ldots ., A n$.

Banking Example

branch (branch-name, branch-city, assets)
customer (customer-name, customer-street, customer-only)
account (account-number, branch-name, balance)
Ioan (loan-number, branch-name, amount)
depositor (customer-name, account-number)
borrower (customer-name, loan-number)

Example Queries

- Find all loans of over $\$ 1200$

$$
\sigma_{\text {amount }>1200}(\text { loan })
$$

-Find the loan number for each loan of an amount greater than \$1200

$$
\prod_{\text {loan-number }}\left(\sigma_{\text {amount }>1200}(\text { loan })\right)
$$

Example Queries

- Find the names of all customers who have a loan, an account, or both, from the bank

$$
\Pi_{\text {customer-name }} \text { (borrower) } \cup \Pi_{\text {customer-name }} \text { (depositor) }
$$

■Find the names of all customers who have a loan and an account at bank.

$$
\Pi_{\text {customer-name }} \text { (borrower) } \cap \Pi_{\text {customer-name }} \text { (depositor) }
$$

Example Queries

- Find the names of all customers who have a loan at the Perryridge branch.

$$
\begin{gathered}
\prod_{\text {customer-name }}\left(\sigma_{\text {branch-name="Perryridge" }}\right. \\
\left.\left(\sigma_{\text {borrower.loan-number }}=\text { loan.loan-number }(\text { borrower } x \text { loan })\right)\right)
\end{gathered}
$$

- Find the names of all customers who have a loan at the Perryridge branch but do not have an account at any branch of the bank.
$\Pi_{\text {Customer-name }}\left(\sigma_{\text {branch-name }}=\right.$ "Perryridge"
$\left(\sigma_{\text {borrower.loan-number }}=\right.$ loan.loan-number $($ borrower x loan $\left.\left.)\right)\right)-$ $\Pi_{\text {Customer-name }}$ (depositor)

Example Queries

- Find the names of all customers who have a loan at the Perryridge branch.

Query 1
$\prod_{\text {Customer-name }}\left(\sigma_{\text {branch-name }}=\right.$ "Perryridge" $($
$\sigma_{\text {borrower.loan-number }}=$ loan.loan-number $($ borrower x loan $\left.)\right)$)

- Query 2
$\prod_{\text {customer-name }}\left(\sigma_{\text {loan.loan-number }}=\right.$ borrower.loan-number $($
$\left(\sigma_{\text {branch-name }}=\right.$ "Perryridge" $($ loan $\left.)\right) x$ borrower $\left.)\right)$

Example Queries

Find the largest account balance

- Rename account relation as d
- The query is:
$\Pi_{\text {balance }}$ (account) $-\Pi_{\text {account.balance }}$
($\sigma_{\text {account.balance }}$ <d.balance $\left(\right.$ account $x \rho_{d}($ account $\left.)\right)$)

